Giải bài 1 2 3 4 trang 7 8 sgk Hình học 11
Hướng dẫn giải Bài §2. Phép tịnh tiến, Chương I. Phép dời hình và phép đồng dạng trong mặt phẳng, sách giáo khoa Hình học 11. Nội dung bài giải bài 1 2 3 4 trang 7 8 sgk Hình học 11 bao gồm tổng hợp công thức, lý thuyết, phương pháp giải bài tập hình học có trong SGK để giúp các em học sinh học tốt môn toán lớp 11.
Lý thuyết
1. Định nghĩa
Trong mặt phẳng, cho vectơ (overrightarrow v = left( {a;b} right)) . Phép tịnh tiến theo vectơ (overrightarrow v = left( {a;b} right)) là phép biến hình, biến một điểm M thành một điểm M’ sao cho (overrightarrow {MM’} = overrightarrow v .)
Ký hiệu: ({T_{overrightarrow v }}(M) = M’) hoặc ({T_{overrightarrow v }}:M to M’).()()()
2. Tính chất
♦ Tính chất 1:
Nếu phép tịnh tiến biến hai điểm M, N thành hai điểm M’, N’ thì MN=M’N’.
♦ Tính chất 2:
Phép tịnh tiến biến đường thẳng thành đường thằng song song hoặc trùng nhau với nó, biến đoạn thằng thành đoạn thẳng bằng nó, biến tam giác thành tam giác bằng nó, biến đường tròn thành đường tròn cùng bán kính.
3. Biểu thức tọa độ của phép tịnh tiến
Giả sử cho (overrightarrow v = left( {a;b} right)) và một điểm M(x;y).
Phép tịnh tiến theo vectơ (overrightarrow v ) biến điểm M thành điểm M’ thì M’ có tọa độ là: (left{ begin{array}{l}x’ = a + xy’ = y + bend{array} right.)
4. Một số dạng bài tập và phương pháp giải
a) Dạng 1
Cho điểm (Aleft( {x;y} right)) tìm ảnh (A’left( {x’;y’} right)) là ảnh của (A) qua phép ({T_{overrightarrow v }}) với (overrightarrow v = left( {{x_0};{y_0}} right))
Phương pháp giải:
Ta có: ({rm{A’ = }}{{rm{T}}_{overrightarrow v }}(A) Leftrightarrow overrightarrow {AA’} = overrightarrow v Leftrightarrow (x’ – x;y’ – y) = ({x_0};{y_0}) Leftrightarrow left{ begin{array}{l}x’ – x = {x_0}y’ – y = {y_0}end{array} right. Leftrightarrow left{ begin{array}{l}x’ = x + {x_0}y’ = y + {y_0}end{array} right.)
Vậy: (A’left( {x + {x_0};y + {y_0}} right)).
b) Dạng 2
Cho đường thẳng(d:ax + by + c = 0) tìm ảnh của d qua phép ({T_{overrightarrow v }}) với (overrightarrow v = left( {{x_0};{y_0}} right))
Phương pháp giải:
Gọi (d’) là ảnh của d qua phép ({T_{overrightarrow v }}) với (overrightarrow v = left( {{x_0};{y_0}} right))
♦ Cách 1:
Với (M = left( {x;y} right) in d) ta có ({T_{overrightarrow v }}left( M right) = M’left( {x’;y’} right) in d’).
Áp dụng biểu thức tọa độ của phép ({T_{overrightarrow v }}): (left{ begin{array}{l}x’ = x + {x_0}y’ = y + {y_0}end{array} right. Leftrightarrow left{ begin{array}{l}x = x’ – {x_0}y = y’ – {y_0}end{array} right.)
Khi đó ta có (d’:aleft( {x’ – {x_0}} right) + bleft( {y’ – {y_0}} right) + c = 0 Leftrightarrow ax’ + by’ – a{x_0} – b{y_0} + c = 0)
Vậy phương trình của d’ là : (ax + by – a{x_0} – b{y_0} + c = 0)
♦ Cách 2:
Ta có d và d’ song song hoặc trùng nhau, vậy d’ có một vec tơ pháp tuyến là (overrightarrow n = left( {a;b} right)).
Ta tìm 1 điểm thuộc d’.
Ta có (Mleft( {0; – frac{c}{b}} right) in d), ảnh (M’left( {x’;y’} right) in d’), ta có : (left{ begin{array}{l}x’ = 0 + {x_0} = {x_0}y’ = – frac{c}{b} + {y_0}end{array} right.)
Phương trình của d’ là : (aleft( {x – {x_0}} right) + bleft( {y + frac{c}{b} – {y_0}} right) = 0 Leftrightarrow ax + by – a{x_0} – b{y_0} + c = 0) Dưới đây là phần Hướng dẫn trả lời các câu hỏi và bài tập trong mục hoạt động của học sinh trên lớp sgk Hình học 11.
Câu hỏi
1. Trả lời câu hỏi 1 trang 5 sgk Hình học 11
Cho hai tam giác đều $ABE$ và $BCD$ bằng nhau trên hình 1.5. Tìm phép tịnh tiến biến ba điểm $A, B, E$ theo thứ tự thành ba điểm $B, C, D$.
Trả lời:
Phép tịnh tiến biến ba điểm $A, B, E$ theo thứ tự thành ba điểm $B, C, D$ là phép tịnh tiến theo (vec v ) như hình dưới đây:
2. Trả lời câu hỏi 2 trang 7 sgk Hình học 11
Nêu cách xác định ảnh của đường thẳng $d$ qua phép tịnh tiến theo vectơ (vec v ).
Trả lời:
Lấy $2$ điểm $A$ và $B$ thuộc đường thẳng $d$
Lần lượt thực hiện phép tịnh tiến A, B theo vectơ v→ ta được 2 điểm $A’$ và $B’$
Đường thẳng đi qua $2$ điểm $A’$ và $B’$ là đường thẳng $d’$ hay $d’$ là ảnh của đường thẳng $d$.
3. Trả lời câu hỏi 3 trang 7 sgk Hình học 11
Trong mặt phẳng tọa độ $Oxy$ cho vecto (overrightarrow v = (1;,2)). Tìm tọa độ của điểm $M’$ là ảnh của điểm $M(3; -1)$ qua phép tịnh tiến (Toverrightarrow v )
Trả lời:
Ta có $M(x’,y’)$ là ảnh của $M$ qua phép tịnh tiến theo vecto $v$
(eqalign{ & Rightarrow left{ matrix{ x’ = 3 + 1 = 4 hfill cr y’ = – 1 + 2 = 1 hfill cr} right. cr & Rightarrow M(4;1) cr} )
Dưới đây là phần Hướng dẫn giải bài 1 2 3 4 trang 7 8 sgk Hình học 11. Các bạn hãy đọc kỹ đầu bài trước khi giải nhé!
Bài tập
Giaibaisgk.com giới thiệu với các bạn đầy đủ phương pháp giải bài tập hình học 11 kèm bài giải chi tiết bài 1 2 3 4 trang 7 8 sgk Hình học 11 của Bài §2. Phép tịnh tiến trong Chương I. Phép dời hình và phép đồng dạng trong mặt phẳng cho các bạn tham khảo. Nội dung chi tiết bài giải từng bài tập các bạn xem dưới đây:
1. Giải bài 1 trang 7 sgk Hình học 11
Chứng minh rằng: (M’=T_{vec{v}}(M) Leftrightarrow M = (M’))
Bài giải:
Ta có: (M’=T_vec{v}(M)Leftrightarrow overrightarrow{MM’}= overrightarrow{v}Leftrightarrow overrightarrow{M’M}=-overrightarrow{v})
(Leftrightarrow M=T_{-vec{v}}.(M’)) (đpcm).
2. Giải bài 2 trang 7 sgk Hình học 11
Cho tam giác $ABC$ có $G$ là trọng tâm. Xác định ảnh của tam giác $ABC$ qua phép tịnh tiến theo vectơ (overrightarrow{AG}.) Xác định điểm $D$ sao cho phép tịnh tiến theo vectơ (vec{AG}) biến $D$ thành $A$.
Bài giải:
Ta có:
♦ Cách 1:
– Dựng hình bình hành $ABB’G$ và $ACC’G$. Khi đó ta có (overrightarrow{AG}) = (overrightarrow{BB’}) = (overrightarrow{CC’}).
Suy ra (T_{vec{AG}} (A) = G), (T_{vec{AG}} (B) = B’), (T_{vec{AG}} (C)= C’).
Do đó ảnh của tam giác $ABC$ qua phép tịnh tiến theo vectơ (overrightarrow{AG}) là tam giác $GB’C’$.
– Trên tia $GA$ lấy điểm $D$ sao cho $A$ là trung điểm của $GD$. Khi đó ta có (overrightarrow{DA}) = (overrightarrow{AG}). Do đó, (T_{vec{AG}} (D) = A)
♦ Cách 2:
Gọi $A’$ là hình ảnh của $A$ qua phép tịnh tiến theo vectơ (overrightarrow{AG}) ta có:
(T_{overrightarrow{AG}}(A)=A’Leftrightarrow overrightarrow{AA’}=overrightarrow{AG} Leftrightarrow A’=G)
Tương tự: (B’=T_{overrightarrow{AG}}(B)Leftrightarrow overrightarrow{BB’}=overrightarrow{AG}) hay $B’$ là đỉnh thứ tư của hình bình hành $ABB’G.$
(C’=T_{overrightarrow{AG}}(C)Leftrightarrow overrightarrow{CC’}=overrightarrow{AG}) hay $C’$ là đỉnh thứ tư của hình bình hành $ACC’G.$
Vậy (Delta A’B’C’) là ảnh của (Delta ABC) đã dựng được.
Ta có: (T_{overrightarrow{AG}}(D)=ALeftrightarrow overrightarrow{DA}=overrightarrow{AG}) hay $D$ là điểm nằm trên đường thẳng đi qua $AG$ và $AD = AG$.
3. Giải bài 3 trang 7 sgk Hình học 11
Trong mặt phẳng tọa độ $Oxy$ cho vectơ (vec v = ( -1;2),) hai điểm (A(3;5), B( -1; 1)) và đường thẳng $d$ có phương trình (x-2y+3=0).
a) Tìm tọa độ của các điểm $A’, B’$ theo thứ tự là ảnh của $A, B$ qua phép tịnh tiến theo (vec{v}).
b) Tìm tọa độ của điểm $C$ sao cho $A$ là ảnh của $C$ qua phép tịnh tiến theo (vec{v}).
c) Tìm phương trình của đường thẳng $d’$ là ảnh của $d$ qua phép tịnh tiến theo (vec{v}).
Bài giải:
Biểu thức toạ độ của phép tịnh tiến (T_{overrightarrow v}) là (left{begin{matrix} x’ =x-1 y’=x+2 end{matrix}right.)
a) Gọi A(xA; yA); B(xB; yB) ta có:
(left{begin{matrix} x_A’=x_A -1 y_A’=y_A+2 end{matrix}right.Leftrightarrow left{begin{matrix} x_A’=3-1=2 y_A’=5+2=7 end{matrix}right.) hay A'(2;7).
(left{begin{matrix} x_B’=x_A -1 y_B’=y_A+2 end{matrix}right.Leftrightarrow left{begin{matrix} x_B’=-2 y_B’=3 end{matrix}right.) hay B'(-2;3).
b) $A$ là ảnh của $C$ qua (T_{overrightarrow v}) thì ta có:
(left{begin{matrix} x_A=x_C-1 y_A=y_C+2 end{matrix}right.Leftrightarrow left{begin{matrix} x_C=x_A+1 y_C=y_A-2 end{matrix}right.Leftrightarrow left{begin{matrix} x_C=4 y_C=3 end{matrix}right.)
Hay $C(4; 3)$
c) ♦ Cách 1. Dùng biểu thức tọa độ của phép tịnh tiến
Gọi (M(x;y)), (M’ = T_{vec{v}} =(x’; y’)). Khi đó
( Rightarrow left{ matrix{x’ = x – 1 hfill cr y’ = y + 2 hfill cr} right. Leftrightarrow left{ matrix{x = x’ + 1 hfill cr y = y’ – 2 hfill cr} right.)
Ta có (M ∈ d ⇔ x-2y +3 = 0)
( ⇔ (x’+1) – 2(y’-2)+3=0 ⇔ x’ -2y’ +8=0 )
(⇔ M’ ∈ d’) có phương trình (x-2y+8=0).
Vậy (T_{vec{v}}(d) = d’:,, x-2y+8=0)
♦ Cách 2. Dùng tính chất của phép tịnh tiến
Gọi (T_{vec{v}}(d) =d’).
Khi đó (d’) song song hoặc trùng với (d) nên phương trình của nó có dạng (x-2y+C=0) (left( {C ne 3} right)).
Lấy một điểm thuộc (d) chẳng hạn (B(-1;1)), khi đó gọi
(B’ = {T_{overrightarrow v }}left( B right) Rightarrow left{ matrix{x’ = – 1 – 1 = – 2 hfill cr y’ = 1 + 2 = 3 hfill cr} right. ) (Rightarrow B’left( { – 2;3} right) in d’)
( Rightarrow – 2 – 2.3 + C = 0 Leftrightarrow C = 8)
Vậy phương trình đường thẳng (left( {d’} right):,,x – 2y + 8 = 0).
4. Giải bài 4 trang 8 sgk Hình học 11
Cho hai đường thẳng (a) và (b) song song với nhau. Hãy chỉ ra một phép tịnh tiến biến (a) thành (b). Có bao nhiêu phép tịnh tiến như thế?
Bài giải:
Giả sử (a) và (b) có vectơ chỉ phương là (overrightarrow{v}).
Lấy điểm (A) bất kì thuộc (a) và điểm (B) bất kì thuộc (b). Với mỗi điểm (M), gọi (M’) = (T_{vec{AB}}) ((M)). Khi đó (overrightarrow{MM’})= (overrightarrow{AB}). Suy ra (overrightarrow{AM}) = (overrightarrow{BM’})
Ta có:
(M ∈ a ⇔) (overrightarrow{AM}) cùng phương với (overrightarrow{v}) ⇔ (overrightarrow{BM’}) cùng phương với (overrightarrow{v}) (⇔ M’ ∈ b).
Từ đó suy ra phép tịnh tiến theo (overrightarrow{AB}) biến (a) thành (b).
Vì (A,B) là các điểm bất kì ( trên (a) và (b) tương ứng) nên có vô số phép tịnh tiến biến (a) thành (b).
Bài trước:
- §1. Phép biến hình
Bài tiếp theo:
- Giải bài 1 2 3 trang 11 sgk Hình học 11
Xem thêm:
- Các bài toán 11 khác
- Để học tốt môn Vật lí lớp 11
- Để học tốt môn Sinh học lớp 11
- Để học tốt môn Ngữ văn lớp 11
- Để học tốt môn Lịch sử lớp 11
- Để học tốt môn Địa lí lớp 11
- Để học tốt môn Tiếng Anh lớp 11
- Để học tốt môn Tiếng Anh lớp 11 thí điểm
- Để học tốt môn Tin học lớp 11
- Để học tốt môn GDCD lớp 11
Chúc các bạn làm bài tốt cùng giải bài tập sgk toán lớp 11 với giải bài 1 2 3 4 trang 7 8 sgk Hình học 11!
“Bài tập nào khó đã có giaibaisgk.com“